Current File : //opt/bitnami/peclapcu/apc_sma.c
/*
  +----------------------------------------------------------------------+
  | APC                                                                  |
  +----------------------------------------------------------------------+
  | Copyright (c) 2006-2011 The PHP Group                                |
  +----------------------------------------------------------------------+
  | This source file is subject to version 3.01 of the PHP license,      |
  | that is bundled with this package in the file LICENSE, and is        |
  | available through the world-wide-web at the following url:           |
  | http://www.php.net/license/3_01.txt                                  |
  | If you did not receive a copy of the PHP license and are unable to   |
  | obtain it through the world-wide-web, please send a note to          |
  | [email protected] so we can mail you a copy immediately.               |
  +----------------------------------------------------------------------+
  | Authors: Daniel Cowgill <[email protected]>              |
  |          Rasmus Lerdorf <[email protected]>                             |
  +----------------------------------------------------------------------+

   This software was contributed to PHP by Community Connect Inc. in 2002
   and revised in 2005 by Yahoo! Inc. to add support for PHP 5.1.
   Future revisions and derivatives of this source code must acknowledge
   Community Connect Inc. as the original contributor of this module by
   leaving this note intact in the source code.

   All other licensing and usage conditions are those of the PHP Group.

 */

#include "apc_sma.h"
#include "apc.h"
#include "apc_globals.h"
#include "apc_mutex.h"
#include "apc_shm.h"
#include "apc_cache.h"

#include <limits.h>
#include "apc_mmap.h"

#ifdef APC_SMA_DEBUG
# ifdef HAVE_VALGRIND_MEMCHECK_H
#  include <valgrind/memcheck.h>
# endif
# define APC_SMA_CANARIES 1
#endif

enum {
	DEFAULT_NUMSEG=1,
	DEFAULT_SEGSIZE=30*1024*1024 };

typedef struct sma_header_t sma_header_t;
struct sma_header_t {
	apc_mutex_t sma_lock;    /* segment lock */
	size_t segsize;         /* size of entire segment */
	size_t avail;           /* bytes available (not necessarily contiguous) */
};

#define SMA_HDR(sma, i)  ((sma_header_t*)((sma->segs[i]).shmaddr))
#define SMA_ADDR(sma, i) ((char*)(SMA_HDR(sma, i)))
#define SMA_RO(sma, i)   ((char*)(sma->segs[i]).roaddr)
#define SMA_LCK(sma, i)  ((SMA_HDR(sma, i))->sma_lock)

#define SMA_CREATE_LOCK  APC_CREATE_MUTEX
#define SMA_DESTROY_LOCK APC_DESTROY_MUTEX
#define SMA_LOCK(sma, i) APC_MUTEX_LOCK(&SMA_LCK(sma, i))
#define SMA_UNLOCK(sma, i) APC_MUTEX_UNLOCK(&SMA_LCK(sma, i))

#if 0
/* global counter for identifying blocks
 * Technically it is possible to do the same
 * using offsets, but double allocations of the
 * same offset can happen. */
static volatile size_t block_id = 0;
#endif

typedef struct block_t block_t;
struct block_t {
	size_t size;       /* size of this block */
	size_t prev_size;  /* size of sequentially previous block, 0 if prev is allocated */
	size_t fnext;      /* offset in segment of next free block */
	size_t fprev;      /* offset in segment of prev free block */
#ifdef APC_SMA_CANARIES
	size_t canary;     /* canary to check for memory overwrites */
#endif
#if 0
	size_t id;         /* identifier for the memory block */
#endif
};

/* The macros BLOCKAT and OFFSET are used for convenience throughout this
 * module. Both assume the presence of a variable shmaddr that points to the
 * beginning of the shared memory segment in question. */

#define BLOCKAT(offset) ((block_t*)((char *)shmaddr + offset))
#define OFFSET(block) ((size_t)(((char*)block) - (char*)shmaddr))

/* macros for getting the next or previous sequential block */
#define NEXT_SBLOCK(block) ((block_t*)((char*)block + block->size))
#define PREV_SBLOCK(block) (block->prev_size ? ((block_t*)((char*)block - block->prev_size)) : NULL)

/* Canary macros for setting, checking and resetting memory canaries */
#ifdef APC_SMA_CANARIES
	#define SET_CANARY(v) (v)->canary = 0x42424242
	#define CHECK_CANARY(v) assert((v)->canary == 0x42424242)
	#define RESET_CANARY(v) (v)->canary = -42
#else
	#define SET_CANARY(v)
	#define CHECK_CANARY(v)
	#define RESET_CANARY(v)
#endif

#define MINBLOCKSIZE (ALIGNWORD(1) + ALIGNWORD(sizeof(block_t)))

/* How many extra blocks to check for a better fit */
#define BEST_FIT_LIMIT 3

static inline block_t *find_block(sma_header_t *header, size_t realsize) {
	void *shmaddr = header;
	block_t *cur, *prv = BLOCKAT(ALIGNWORD(sizeof(sma_header_t)));
	block_t *found = NULL;
	uint32_t i;
	CHECK_CANARY(prv);

	while (prv->fnext) {
		cur = BLOCKAT(prv->fnext);
		CHECK_CANARY(cur);

		/* Found a suitable block */
		if (cur->size >= realsize) {
			found = cur;
			break;
		}

		prv = cur;
	}

	if (found) {
		/* Try to find a smaller block that also fits */
		prv = cur;
		for (i = 0; i < BEST_FIT_LIMIT && prv->fnext; i++) {
			cur = BLOCKAT(prv->fnext);
			CHECK_CANARY(cur);

			if (cur->size >= realsize && cur->size < found->size) {
				found = cur;
			}

			prv = cur;
		}
	}

	return found;
}

/* {{{ sma_allocate: tries to allocate at least size bytes in a segment */
static APC_HOTSPOT size_t sma_allocate(sma_header_t *header, size_t size, size_t fragment, size_t *allocated)
{
	void* shmaddr;          /* header of shared memory segment */
	block_t* prv;           /* block prior to working block */
	block_t* cur;           /* working block in list */
	size_t realsize;        /* actual size of block needed, including header */
	size_t block_size = ALIGNWORD(sizeof(struct block_t));

	realsize = ALIGNWORD(size + block_size);

	/*
	 * First, insure that the segment contains at least realsize free bytes,
	 * even if they are not contiguous.
	 */
	shmaddr = header;

	if (header->avail < realsize) {
		return SIZE_MAX;
	}

	cur = find_block(header, realsize);
	if (!cur) {
		/* No suitable block found */
		return SIZE_MAX;
	}

	if (cur->size == realsize || (cur->size > realsize && cur->size < (realsize + (MINBLOCKSIZE + fragment)))) {
		/* cur is big enough for realsize, but too small to split - unlink it */
		*(allocated) = cur->size - block_size;
		prv = BLOCKAT(cur->fprev);
		prv->fnext = cur->fnext;
		BLOCKAT(cur->fnext)->fprev = OFFSET(prv);
		NEXT_SBLOCK(cur)->prev_size = 0;  /* block is alloc'd */
	} else {
		/* nextfit is too big; split it into two smaller blocks */
		block_t* nxt;      /* the new block (chopped part of cur) */
		size_t oldsize;    /* size of cur before split */

		oldsize = cur->size;
		cur->size = realsize;
		*(allocated) = cur->size - block_size;
		nxt = NEXT_SBLOCK(cur);
		nxt->prev_size = 0;                       /* block is alloc'd */
		nxt->size = oldsize - realsize;           /* and fix the size */
		NEXT_SBLOCK(nxt)->prev_size = nxt->size;  /* adjust size */
		SET_CANARY(nxt);

		/* replace cur with next in free list */
		nxt->fnext = cur->fnext;
		nxt->fprev = cur->fprev;
		BLOCKAT(nxt->fnext)->fprev = OFFSET(nxt);
		BLOCKAT(nxt->fprev)->fnext = OFFSET(nxt);
#if 0
		nxt->id = -1;
#endif
	}

	cur->fnext = 0;

	/* update the block header */
	header->avail -= cur->size;

	SET_CANARY(cur);

#if 0
	cur->id = ++block_id;
	fprintf(stderr, "allocate(realsize=%d,size=%d,id=%d)\n", (int)(size), (int)(cur->size), cur->id);
#endif

	return OFFSET(cur) + block_size;
}
/* }}} */

/* {{{ sma_deallocate: deallocates the block at the given offset */
static APC_HOTSPOT size_t sma_deallocate(void* shmaddr, size_t offset)
{
	sma_header_t* header;   /* header of shared memory segment */
	block_t* cur;       /* the new block to insert */
	block_t* prv;       /* the block before cur */
	block_t* nxt;       /* the block after cur */
	size_t size;        /* size of deallocated block */

	assert(offset >= ALIGNWORD(sizeof(struct block_t)));
	offset -= ALIGNWORD(sizeof(struct block_t));

	/* find position of new block in free list */
	cur = BLOCKAT(offset);

	/* update the block header */
	header = (sma_header_t*) shmaddr;
	header->avail += cur->size;
	size = cur->size;

	if (cur->prev_size != 0) {
		/* remove prv from list */
		prv = PREV_SBLOCK(cur);
		BLOCKAT(prv->fnext)->fprev = prv->fprev;
		BLOCKAT(prv->fprev)->fnext = prv->fnext;
		/* cur and prv share an edge, combine them */
		prv->size +=cur->size;

		RESET_CANARY(cur);
		cur = prv;
	}

	nxt = NEXT_SBLOCK(cur);
	if (nxt->fnext != 0) {
		assert(NEXT_SBLOCK(NEXT_SBLOCK(cur))->prev_size == nxt->size);
		/* cur and nxt shared an edge, combine them */
		BLOCKAT(nxt->fnext)->fprev = nxt->fprev;
		BLOCKAT(nxt->fprev)->fnext = nxt->fnext;
		cur->size += nxt->size;

		CHECK_CANARY(nxt);

#if 0
		nxt->id = -1; /* assert this or set it ? */
#endif

		RESET_CANARY(nxt);
	}

	NEXT_SBLOCK(cur)->prev_size = cur->size;

	/* insert new block after prv */
	prv = BLOCKAT(ALIGNWORD(sizeof(sma_header_t)));
	cur->fnext = prv->fnext;
	prv->fnext = OFFSET(cur);
	cur->fprev = OFFSET(prv);
	BLOCKAT(cur->fnext)->fprev = OFFSET(cur);

	return size;
}
/* }}} */

/* {{{ APC SMA API */
PHP_APCU_API void apc_sma_init(apc_sma_t* sma, void** data, apc_sma_expunge_f expunge, int32_t num, size_t size, char *mask) {
	int32_t i;

	if (sma->initialized) {
		return;
	}

	sma->initialized = 1;
	sma->expunge = expunge;
	sma->data = data;

#if APC_MMAP
	/*
	 * I don't think multiple anonymous mmaps makes any sense
	 * so force sma_numseg to 1 in this case
	 */
	if(!mask ||
	   (mask && !strlen(mask)) ||
	   (mask && !strcmp(mask, "/dev/zero"))) {
		sma->num = 1;
	} else {
		sma->num = num > 0 ? num : DEFAULT_NUMSEG;
	}
#else
	sma->num = num > 0 ? num : DEFAULT_NUMSEG;
#endif

	sma->size = size > 0 ? size : DEFAULT_SEGSIZE;

	sma->segs = (apc_segment_t*) pemalloc(sma->num * sizeof(apc_segment_t), 1);

	for (i = 0; i < sma->num; i++) {
		sma_header_t*   header;
		block_t     *first, *empty, *last;
		void*       shmaddr;

#if APC_MMAP
		sma->segs[i] = apc_mmap(mask, sma->size);
		if(sma->num != 1)
			memcpy(&mask[strlen(mask)-6], "XXXXXX", 6);
#else
		{
			int j = apc_shm_create(i, sma->size);
#if PHP_WIN32
			/* TODO remove the line below after 7.1 EOL. */
			SetLastError(0);
#endif
			sma->segs[i] = apc_shm_attach(j, sma->size);
		}
#endif

		sma->segs[i].size = sma->size;

		shmaddr = sma->segs[i].shmaddr;

		header = (sma_header_t*) shmaddr;
		SMA_CREATE_LOCK(&header->sma_lock);
		header->segsize = sma->size;
		header->avail = sma->size - ALIGNWORD(sizeof(sma_header_t)) - ALIGNWORD(sizeof(block_t)) - ALIGNWORD(sizeof(block_t));

		first = BLOCKAT(ALIGNWORD(sizeof(sma_header_t)));
		first->size = 0;
		first->fnext = ALIGNWORD(sizeof(sma_header_t)) + ALIGNWORD(sizeof(block_t));
		first->fprev = 0;
		first->prev_size = 0;
		SET_CANARY(first);
#if 0
		first->id = -1;
#endif
		empty = BLOCKAT(first->fnext);
		empty->size = header->avail - ALIGNWORD(sizeof(block_t));
		empty->fnext = OFFSET(empty) + empty->size;
		empty->fprev = ALIGNWORD(sizeof(sma_header_t));
		empty->prev_size = 0;
		SET_CANARY(empty);
#if 0
		empty->id = -1;
#endif
		last = BLOCKAT(empty->fnext);
		last->size = 0;
		last->fnext = 0;
		last->fprev =  OFFSET(empty);
		last->prev_size = empty->size;
		SET_CANARY(last);
#if 0
		last->id = -1;
#endif
	}
}

PHP_APCU_API void apc_sma_detach(apc_sma_t* sma) {
	/* Important: This function should not clean up anything that's in shared memory,
	 * only detach our process-local use of it. In particular locks cannot be destroyed
	 * here. */
	int32_t i;

	assert(sma->initialized);
	sma->initialized = 0;

	for (i = 0; i < sma->num; i++) {
#if APC_MMAP
		apc_unmap(&sma->segs[i]);
#else
		apc_shm_detach(&sma->segs[i]);
#endif
	}

	free(sma->segs);
}

PHP_APCU_API void *apc_sma_malloc_ex(apc_sma_t *sma, size_t n, size_t *allocated) {
	size_t fragment = MINBLOCKSIZE;
	size_t off;
	int32_t i;
	zend_bool nuked = 0;
	int32_t last = sma->last;

restart:
	assert(sma->initialized);

	if (!SMA_LOCK(sma, last)) {
		return NULL;
	}

	off = sma_allocate(SMA_HDR(sma, last), n, fragment, allocated);

	if (off != SIZE_MAX) {
		void* p = (void *)(SMA_ADDR(sma, last) + off);
		SMA_UNLOCK(sma, last);
#ifdef VALGRIND_MALLOCLIKE_BLOCK
		VALGRIND_MALLOCLIKE_BLOCK(p, n, 0, 0);
#endif
		return p;
	}

	SMA_UNLOCK(sma, last);

	for (i = 0; i < sma->num; i++) {
		if (i == last) {
			continue;
		}

		if (!SMA_LOCK(sma, i)) {
			return NULL;
		}

		off = sma_allocate(SMA_HDR(sma, i), n, fragment, allocated);
		if (off != SIZE_MAX) {
			void* p = (void *)(SMA_ADDR(sma, i) + off);
			sma->last = i;
			SMA_UNLOCK(sma, i);
#ifdef VALGRIND_MALLOCLIKE_BLOCK
			VALGRIND_MALLOCLIKE_BLOCK(p, n, 0, 0);
#endif
			return p;
		}
		SMA_UNLOCK(sma, i);
	}

	/* Expunge cache in hope of freeing up memory, but only once */
	if (!nuked) {
		sma->expunge(*sma->data, n+fragment);
		nuked = 1;
		goto restart;
	}

	return NULL;
}

PHP_APCU_API void* apc_sma_malloc(apc_sma_t* sma, size_t n)
{
	size_t allocated;
	return apc_sma_malloc_ex(sma, n, &allocated);
}

PHP_APCU_API void apc_sma_free(apc_sma_t* sma, void* p) {
	int32_t i;
	size_t offset;

	if (p == NULL) {
		return;
	}

	assert(sma->initialized);

	for (i = 0; i < sma->num; i++) {
		offset = (size_t)((char *)p - SMA_ADDR(sma, i));
		if (p >= (void*)SMA_ADDR(sma, i) && offset < sma->size) {
			if (!SMA_LOCK(sma, i)) {
				return;
			}

			sma_deallocate(SMA_HDR(sma, i), offset);
			SMA_UNLOCK(sma, i);
#ifdef VALGRIND_FREELIKE_BLOCK
			VALGRIND_FREELIKE_BLOCK(p, 0);
#endif
			return;
		}
	}

	apc_error("apc_sma_free: could not locate address %p", p);
}

#ifdef APC_MEMPROTECT
PHP_APCU_API void* apc_sma_protect(apc_sma_t* sma, void* p) {
	unsigned int i = 0;
	size_t offset;

	if (p == NULL) {
		return NULL;
	}

	if(SMA_RO(sma, sma->last) == NULL) return p;

	offset = (size_t)((char *)p - SMA_ADDR(sma, sma->last));

	if(p >= (void*)SMA_ADDR(sma, sma->last) && offset < sma->size) {
		return SMA_RO(sma, sma->last) + offset;
	}

	for (i = 0; i < sma->num; i++) {
		offset = (size_t)((char *)p - SMA_ADDR(sma, i));
		if (p >= (void*)SMA_ADDR(sma, i) && offset < sma->size) {
			return SMA_RO(sma, i) + offset;
		}
	}

	return NULL;
}

PHP_APCU_API void* apc_sma_unprotect(apc_sma_t* sma, void* p){
	unsigned int i = 0;
	size_t offset;

	if (p == NULL) {
		return NULL;
	}

	if(SMA_RO(sma, sma->last) == NULL) return p;

	offset = (size_t)((char *)p - SMA_RO(sma, sma->last));

	if(p >= (void*)SMA_RO(sma, sma->last) && offset < sma->size) {
		return SMA_ADDR(sma, sma->last) + offset;
	}

	for (i = 0; i < sma->num; i++) {
		offset = (size_t)((char *)p - SMA_RO(sma, i));
		if (p >= (void*)SMA_RO(sma, i) && offset < sma->size) {
			return SMA_ADDR(sma, i) + offset;
		}
	}

	return NULL;
}
#else
PHP_APCU_API void* apc_sma_protect(apc_sma_t* sma, void *p) { return p; }
PHP_APCU_API void* apc_sma_unprotect(apc_sma_t* sma, void *p) { return p; }
#endif

PHP_APCU_API apc_sma_info_t *apc_sma_info(apc_sma_t* sma, zend_bool limited) {
	apc_sma_info_t *info;
	apc_sma_link_t **link;
	int32_t i;
	char *shmaddr;
	block_t *prv;

	if (!sma->initialized) {
		return NULL;
	}

	info = emalloc(sizeof(apc_sma_info_t));
	info->num_seg = sma->num;
	info->seg_size = sma->size - (ALIGNWORD(sizeof(sma_header_t)) + ALIGNWORD(sizeof(block_t)) + ALIGNWORD(sizeof(block_t)));

	info->list = emalloc(info->num_seg * sizeof(apc_sma_link_t *));
	for (i = 0; i < sma->num; i++) {
		info->list[i] = NULL;
	}

	if (limited) {
		return info;
	}

	/* For each segment */
	for (i = 0; i < sma->num; i++) {
		SMA_LOCK(sma, i);
		shmaddr = SMA_ADDR(sma, i);
		prv = BLOCKAT(ALIGNWORD(sizeof(sma_header_t)));

		link = &info->list[i];

		/* For each block in this segment */
		while (BLOCKAT(prv->fnext)->fnext != 0) {
			block_t *cur = BLOCKAT(prv->fnext);

			CHECK_CANARY(cur);

			*link = emalloc(sizeof(apc_sma_link_t));
			(*link)->size = cur->size;
			(*link)->offset = prv->fnext;
			(*link)->next = NULL;
			link = &(*link)->next;

			prv = cur;
		}
		SMA_UNLOCK(sma, i);
	}

	return info;
}

PHP_APCU_API void apc_sma_free_info(apc_sma_t *sma, apc_sma_info_t *info) {
	int i;

	for (i = 0; i < info->num_seg; i++) {
		apc_sma_link_t *p = info->list[i];
		while (p) {
			apc_sma_link_t *q = p;
			p = p->next;
			efree(q);
		}
	}
	efree(info->list);
	efree(info);
}

PHP_APCU_API size_t apc_sma_get_avail_mem(apc_sma_t* sma) {
	size_t avail_mem = 0;
	int32_t i;

	for (i = 0; i < sma->num; i++) {
		sma_header_t* header = SMA_HDR(sma, i);
		avail_mem += header->avail;
	}
	return avail_mem;
}

PHP_APCU_API zend_bool apc_sma_get_avail_size(apc_sma_t* sma, size_t size) {
	int32_t i;

	for (i = 0; i < sma->num; i++) {
		sma_header_t* header = SMA_HDR(sma, i);
		if (header->avail > size) {
			return 1;
		}
	}
	return 0;
}

PHP_APCU_API void apc_sma_check_integrity(apc_sma_t* sma)
{
	/* dummy */
}

/* }}} */

/*
 * Local variables:
 * tab-width: 4
 * c-basic-offset: 4
 * End:
 * vim>600: noexpandtab sw=4 ts=4 sts=4 fdm=marker
 * vim<600: noexpandtab sw=4 ts=4 sts=4
 */